
Introduction to
Model Driven Architecture (MDA)

NCICB Software Development Processes
Facilitating Systems Interoperability

Sashi Thangaraj (SAIC)

2

Agenda

4 What is the MDA?
– MDA Overview
– MDA Principles

4 Why Model?

4 MDA and caBIG

4 MDA and Software Development

4 MDA Approach

4 Case Study – caBIO and MDA

4 Q&A

3

What is the MDA?

4 Model Driven Architecture (MDA) is an emerging set of standards and
technologies focused on a particular software development style

4 The MDA provides a conceptual framework and set of standards
– Express models
– Model relationships,
– Model-to-model transformations

4 MDA is based on the
– Meta-Object Facility (MOF)
– Unified Modeling Language (UML)
– XML Metadata Interchange (XMI)
– Common Warehouse Meta-Model (CWM) modeling specifications

4 MDA established by Object Management Group (OMG), a non-profit
consortium of 800+ organizations that produces/maintains computer
industry specifications for interoperable enterprise applications

“MDA works as a reasonable step up from today’s popular development techniques.”
— Grady Booch

4

Principles of MDA

4 Four principles underlie the OMG’s view of MDA:
o Well-defined notation models are cornerstone to understanding

systems
o Building systems can be organized around a set of models which are

organized into an architectural framework of layers and
transformations

o A formal underpinning for describing models in a set of meta-models
facilitates meaningful integration and transformation among models,
and is the basis for automation through tools

o Acceptance and broad adoption of this model-based approach
requires industry standards to provide openness to consumers, and
foster competition among vendors

5

Why Model?

4 All forms of engineering rely on models to understand complex,
real-world systems

4 Models facilitate the communication of key system
characteristics and complexities to various stakeholders

4 Models provide abstractions of a physical system that allow
engineers to reason about the system by ignoring extraneous
details while focusing on relevant ones

4 Models are used to reason about specific properties of the
system when aspects of the system change and can assist in
predicting system qualities

4 Depending on the context, different elements can be modeled
which provide different views which ultimately facilitates:
– analyzing problems
– proposing solutions

4 Applying different kinds of models provides a well-defined style
of development, providing ability to re-use common approaches

6

MDA and caBIG

4 The use of MDA will facilitate interoperability between caBIG
systems
– Interoperability is key for data sharing in federated systems

4 MDA approaches will communicate key system characteristics to
caBIG participants

4 caBIG silver/gold compatibility guidelines specify the use of
standards based information models for facilitating
interoperability

4 The caBIG architecture workspace will assist in recommending
standard document templates describing MDA artifacts (e.g. use
cases)

7

MDA and Software Development

4 Several software development processes leverage MDA to
varying degrees:
– Rational Unified Process (RUP)
– Extreme Programming (XP)
– Agile Programming
– Home Grown Process
– Combinations

• RUP and XP
– Others

4 In each software development process, there are different ways
of developing software

– Code only
– Model only
– Model is our code -> Code is our model

4 Software development tools and technologies can assist in
developing software based on MDAs making it practical and
efficient to apply

8

MDA Approach

4 Analyze the problem space and develop the artifacts for each
scenario
– Use Cases

4 Design the system by developing artifacts based on the use case
– Class Diagram
– Sequence Diagram

4 Use meta-model tools to generate the code

9

Case Study – caBIO and MDA

4 caBIO Overview

4 caBIO Problem Statement
– Use Cases

4 caBIO Design Artifacts
– UML Class Diagrams
– Sequence Diagrams
– Architecture

4 caBIO Software Development
– Code Generation Tools
– APIs

4 caBIO Testing and Deployment

10

caBIO Overview

4 The cancer Bioinformatics Infrastructure Objects (caBIO) is a
service-oriented based infrastructure supporting multi-
disciplinary scientific research studies

4 caBIO provides standard object models and uniform API (Java,
SOAP, HTTP-XML, Perl) access to a variety of intramural and
extramural genomic, biological, and clinical data sources

4 caBIO objects simulate the behavior of actual biomedical
components such as genes, sequences, chromosomes,
sequences, cellular pathways, ontologies, clinical protocols, etc.

4 caBIO is “open source” and provides an abstraction layer that
allows developers to access genomic information using a
standardized tool set without concerns for implementation
details and data management

11

caBIO Problem Space – Use Cases

4 Description

4 Actors

4 Basic Course

4 Alternative Course

12

caBIO Design Artifacts – UML Class Diagrams

13

caBIO Design Artifacts – State Transition Diagrams

4 Sequence
diagrams
model the flow
of logic within
your system
visually,
enabling
validation and
documentation
of logic

14

caBIO Design Artifacts - Architecture

Java
Applications

Data
Access
Objects
(OJB)

Object
Managers

Web Server

Tomcat
Servlets

(XML
XSL/XSLT)

JSPs

SOAP

HTML/XML
Clients

(Browsers)

SOAP
Clients

DataObjectPresentationClient

Perl
Clients

Biomedical
Objects

[Gene, Disease,
etc.]

RMI

UCSC
DAS

caDSR

EVS

NCI

15

caBIO Software Development – Code Generation Tools

4 caBIO leverages in house code generation tools for generating
APIs

4 There are a variety of third-party and open source code
generation tools for generating Java, SOAP, HTTP, and Perl
APIs

4 Code generation tools rely on templates that generate code
directly from the UML model (XMI file)

4 Automatic code generation facilitates ease of maintenance

4 Standards based model driven automated design and
development processes facilitate ease of maintenance!

16

caBIO Software Development – APIs

4 Java
– Query/retrieve biomedical objects

directly via RMI

4 HTTP-XML
– Properly formed URLs in any web

browser/client can retrieve XML-
formatted object data directly

4 SOAP
– SOAP client in any

language/environment can send
request to NCICB server for object
data

– SOAP-XML envelope and payload
returned

4 caBIOperl
– caBIOperl wraps lower-level

SOAP API
– Shields developers from SOAP

calls and XML parsing

17

caBIO Testing and Deployment

4 Testing occurs in various stages:
– Development (Unit) Testing
– Integration Testing
– System Testing
– Production Testing

4 Test cases are created for each use case

4 Test scripts are created to test all test cases and APIs

4 Data validation is an important component of testing

4 caBIO is deployed to each test server and the production server
via standard build processes
– Apache ANT, an open source Java based build tool, is leveraged

4 All MDA artifacts and artifact versions are maintained under
Configuration Management (CM) control
– Concurrent Versioning System (CVS), an open source CM tool, is

leveraged

Q & A

4 http://ncicb.nci.nih.gov/core/caBIO

